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Abstract We present the extension of a deterministic

fractal geometric procedure aimed at representing the

complexity of patterns encountered in environmental

applications. The procedure, which is based on transfor-

mations of multifractal distributions via fractal functions,

is extended through the introduction of nonlinear pertur-

bations in the generating iterated linear maps. We

demonstrate, by means of various simulations based on

changes in parameters, that the nonlinear perturbations

generate yet a richer collection of interesting patterns, as

reflected by their overall shapes and their statistical and

multifractal properties. It is shown that the nonlinear

extensions yield structures that closely resemble complex

hydrologic spatio-temporal datasets, such as rainfall and

runoff time series, and width-functions of river networks.

The implications of this nonlinear approach for environ-

mental modeling and prediction are discussed.

Keywords Modeling � Fractals � Multifractals �
Iterated maps

1 Introduction

Mathematical methods based on stochastic approaches

(e.g., Box et al. 1994; Yaglom 1987) and on fractal

geometry and chaos theory (e.g., Mandelbrot 1983; Lorenz

1963) have now long been used as a suitable language for

the description of the complexities so often encountered in

natural phenomena. These notions, however, are oftentimes

insufficient to study, on an individual basis, the incredible

variety of patterns observed in nature. Given that natural

sets (i.e., time series, spatial patterns, space–time sets) are

typically erratic, noisy, intermittent, nonsmooth, or in short

‘‘random,’’ it has become natural to model them using

stochastic (fractal) theories. Such modeling has resulted in

a variety of procedures that, while yielding realizations that

preserve some of the relevant statistical and fractal attri-

butes of the records (e.g., autocorrelation function, power

spectrum, moments, multifractal spectrum, etc.), are typi-

cally unable to capture all the specific details and textures

present in individual sets.

As stochastic approaches, by definition, can only generate

plausible realizations preserving only some features of the

data, and as studies of nonlinear dynamics have revealed that

details indeed matter (e.g., in climate studies; Lorenz 1963),

the following questions have become inevitable: (a) Is it

possible to devise a modeling approach that faithfully

models individual patterns capturing not only the overall

trends and statistical features of the records but also their

inherent details? (b) Can such an approach be defined

without resorting to the concept of randomness, implying an

inherent hidden order in complexity as found in deterministic

chaos? (c) Can such an approach, by the capturing of details,

be helpful in studying the underlying dynamics of such sets?

It is now well known that a large class of deterministic

fractal sets can be generated via iterations of simple linear
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maps (e.g., Barnsley 1988). Puente (1992) described how

fractal interpolation functions (defined as attractors of

simple linear maps) transform multifractal distributions into

deterministic derived measures that mimic the complexity

of patterns found in nature. The present work reviews and

extends this deterministic fractal geometric approach. The

extensions entail adding bounded nonlinear perturbations to

the above-mentioned iterated linear maps to produce yet

more exotic attractors and subsequent deterministic derived

measures. As shall be demonstrated herein, the addition of

such perturbations uncovers a vast class of relevant patterns

over one dimension that closely resemble those found in a

variety of environmental fields. These patterns turn out to be

parsimoniously encoded via few geometric parameters (i.e.,

the quantities that define the involved maps, their pertur-

bations and how iterations are performed) and, given the

simplicity of the algorithm that generates them, are there-

fore amenable for applications.

The organization of this paper is as follows. Given first is

a review of the original mathematical construction and a

description of the nonlinear extensions. This is followed by

a variety of examples based on a host of evolutions,

obtained varying few parameters, that include statistical and

multifractal analysis of the patterns. Finally, the relevance

of this enhanced approach to environmental modeling is

discussed and directions for future work are sketched.

2 The fractal–multifractal approach

The graph G of a fractal interpolating function, from x to y

and passing by N ? 1 points on the plane {(xn, yn); x0

\_\ xN}, is defined by iterating N linear maps,

n = 1,..., N (e.g., Barnsley 1986):

wn
x
y

� �
¼ an 0

cn dn

� �
x
y

� �
þ en

fn

� �
; ð1Þ

such that |dn| \ 1 and

wn
x0

y0

� �
¼ xn�1

yn�1

� �
; wn

xN

yN

� �
¼ xn

yn

� �
: ð2Þ

The two initial conditions in Eq. 2 lead to simultaneous

sets of linear equations that allow calculation of the

parameters an, cn, en, and fn in terms of the interpolating

points and the vertical scalings dn, as follows:

an ¼
xn � xn�1

xN � x0

ð3Þ

en ¼ xn�1 � x0 � an ð4Þ

cn ¼
yn � yn�1 � dnðyN � y0Þ

xN � x0

ð5Þ

fn ¼ yn�1 � cn � x0 � dn � y0 ð6Þ

Equation 2 ensures that G (the attractor obtained by arbi-

trarily iterating the linear maps) exists and that it is a

continuous function that contains the initial interpolating

points (e.g., Barnsley 1986; Puente 1992). As the same

attractor G is found irrespective of how the iterations are

performed (i.e., with fair or biased proportions on the N

maps wn), such a unique set is fully deterministic.

Depending on the parameters, G turns out to have a fractal

dimension D [ [1, 2) (Barnsley 1988).

As the process of iterations is carried out, effectively

sampling G point by point, not only is the attractor being

computed but also a unique invariant measure over G is

induced, which reflects how the attractor is being filled up.

The existence of such a measure allows computing unique

(and once again fully deterministic) projections over the

coordinates x and y (say dx and dy) that turn out to have

interesting shapes, as found in a variety of environmental

applications and beyond (e.g., Puente 1996, 2004).

Figure 1 shows an example of these ideas for a fractal

interpolating function (having a fractal dimension D =

1.485) that passes by the three points {(0, 0), (1/2, -0.35),

(1, -0.2)} when the vertical scalings of the N = 2

mappings wn are d1 = -0.8 and d2 = -0.6. In addition to

the graph of the attractor G, clearly a continuous function

from x to y, the figure also includes the implied projections

dx and dy of the unique measure found over G when the

corresponding mappings w1 and w2 are iterated (219 times)

according to a 30–70% proportion, using independent

pseudo-random numbers, starting the process from the

mid-point (1/2, -0.35).

Fig. 1 From a multifractal measure dx to a derived measure dy via a

continuous fractal interpolating function from x to y found via the

iteration of linear maps. Interpolating points: {(0, 0), (1/2, -0.35), (1,

-0.2)}, vertical scalings: d1 = -0.8, d2 = -0.6, parent multifractal

parameter: p = 0.3. (Measures dx and dy are normalized so that they

add up to one and they are computed over 4,096 bins)
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As the x coordinate of the linear maps does not depend

on y (as implied by the 0 value in the first component of

Eq. 1), the measure dx turns out to be a deterministic

binomial multifractal with parameter p = 0.3, as defined

via a simple multiplicative cascade (Mandelbrot 1989).

The measure dy, on the other hand, being related to dx via

the fractal interpolating function whose graph is G, turns

out to be the derived measure of dx via such a function and

is, hence, computed numerically adding all measure values

over x that correspond to a given value of y (e.g., Puente

1994, 1996). Notice that this projection may be computed

at a general angle h, other than at 0� as shown in Fig. 1

over the y axis.

As may be seen, the procedure leads to complex and

‘‘random-looking’’ measures dy (i.e., the projection over

the y axis) that resemble environmental time series, such as

rainfall as a function of time (Puente and Obregón 1996).

As multifractal measures are relevant in the study of tur-

bulence over one dimension (e.g., Meneveau and

Sreenivasan 1987), the projection sets, dy, obtained inte-

grating a turbulence-related dx via a fractal interpolating

function, may be assigned an interpretation as ‘‘reflections’’

or more precisely ‘‘transformations’’ of turbulence (Puente

and Sivakumar 2007).

3 Nonlinear extensions of the fractal–multifractal

approach

A suitable way to extend the fractal–multifractal approach

is to add a bounded nonlinear perturbation g(y) on the y

component of the linear maps previously introduced, as

follows:

wn
x
y

� �
¼ an 0

cn dn

� �
x

yþ gðyÞ

� �
þ en

fn

� �
: ð7Þ

This yields, using the same set of initial conditions as

before (Eq. 2), the following modified parameters cn and fn
that now depend also on the specific choice of the nonlinear

function g:

cn ¼
yn � yn�1 � dnðyN þ gðyNÞ � y0 � gðy0ÞÞ

xN � x0

ð8Þ

fn ¼ yn�1 � cn � x0 � dn � ðy0 þ gðy0ÞÞ ð9Þ

Figure 2 shows an example of what is obtained when

adding a cosine perturbation of the form

g(y) = A � cos(x � y), for an amplitude A = 0.5 and a

frequency x = 1, while using the same set of parameters

employed for the linear case in Fig. 1. As may be noticed,

this nonlinear case results in an attractor that is now a

sparse collection of points, unlike the linear case in which

successive points do agglomerate into a single continuous

function. Such an attractor set turns out to be a

mathematical fractal that repeats itself under increasing

magnification and that has a fractal dimension similar to

that of the interpolating function shown in Fig. 1 (i.e.,

D & 1.485). Notice, by comparing Figs. 1 and 2, how the

same multifractal measure dx now gets transformed into a

distinct projection set dy, whose overall features and

textures are, however, similar to those observed in Fig. 1.

As a way of further comparison, Fig. 3 includes a sta-

tistical-multifractal analysis of the ‘‘signals’’ in Figs. 1 and

2, that is, the linear and nonlinear counterparts of the

notions herein. In addition to the projections themselves

(plotted left to right rather than bottom to top), the figures

also include the records’ autocorrelation functions (with

the ±e-1 levels highlighted), their power spectra (plotted

as it is customary in a log–log scale) and their multifractal

spectra (i.e., their so-called ‘‘f vs. a’’ curves; see Puente and

Obregón 1999).

Notice that, although the locations of the main peaks

vary, both data sets indeed share a similar degree of

complexity, as indicated by similar decay in autocorrela-

tion functions, power-law scaling in their power spectra

(S(x) * xb), and multifractal properties (as reflected by

the similar inverted parabolas in their multifractal spectra).

More specifically, both signals do share similar statistical-

multifractal characteristics, as follows. They have, for the

linear and nonlinear cases, respectively, (a) fractal

dimensions for the signals Ddy of 1.43 and 1.37 (not the

dimension of their defining attractors G), (b) correlation

scales se (defined when correlation reaches e-1) of 101 and

80 lags, (c) spectral exponents b of -1.21 and -1.08, and

(d) entropy dimensions D1 (the shown intersection between

Fig. 2 From a multifractal measure dx to a derived measure dy via a

fractal attractor from x to y found via the iteration of nonlinear maps.

Interpolating points: {(0, 0), (1/2, -0.35), (1, -0.2)}, vertical

scalings: d1 = -0.8, d2 = -0.6, parent multifractal parameter:

p = 0.3, nonlinear perturbation: g(y) = A � cos(x � y), A = 0.5,

x = 1. (Measures dx and dy are normalized so that they add up to

one and they are computed over 4,096 bins)
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the multifractal spectrum and the f = a line) of 0.88 and

0.85.

Overall, these features and characteristics (for both the

linear and the nonlinear cases) turn out to be similar to

those found in practical environmental applications and

beyond (e.g., Puente et al. 1999; Puente 2004). As an

example of this fact, Fig. 4 presents a statistical-multi-

fractal analysis for a rainfall storm event measured in

Boston (and made of 2,048 values), for which chaotic

behavior was identified (Rodrı́guez-Iturbe et al. 1989).

Such a pattern, shown normalized so that its area equals

one unit as in the previous projections, yields decay in the

autocorrelation function, power-law scaling in the power

spectrum, and multifractal properties, which gives

se = 48 lags (or approximately 96 for a series having

4,096 values as in Fig. 3), b = -1.74 and D1 = 0.96.

These overall features and characteristics are certainly

comparable (although not identical) to those shown in

Fig. 3.

From this and other examples (e.g., Obregón et al.

2002a, b; Puente and Sivakumar 2003), it may thus be

construed that the enhanced nonlinear fractal-multifractal

framework is worthy of further investigation as a candidate

to model environmental data sets. In light of this, an initial

exploration of the vast array of (deterministic) sets that

may be generated via this nonlinear geometric setting is

presented next.

4 Sample patterns via the nonlinear

fractal–multifractal approach

As analytical derivations of the derived measures and their

implied statistical-multifractal properties are extremely

difficult, even for the linear case (Puente 1992), the results

herein correspond to numerical calculations aimed at

identifying the effects of varying some of the parameters of

the geometric representation. As varying just a single

parameter changes the fractal attractor globally, the

exploration herein will also serve as a way to build intui-

tion on the derived patterns that may be generated.

Figure 5 presents a sensitivity analysis around the pat-

tern generated via the linear fractal–multifractal approach

shown in Fig. 1 (now portrayed on the top of Fig. 5), by

adding the aforementioned cosine perturbation, varying the

amplitude A from 0 (i.e., the linear case) to 0.5 in incre-

ments of 0.125, while having the frequency parameter fixed

at x = 2. For improved readability, the graphs here (and in

the rest of the paper) are not labeled in their axes, but it

should be noted that all of them integrate to one. As may be

observed, the main chunks as well as the major peaks of

these sets, all of which may very well represent reasonable

variations of a given environmental phenomenon (e.g.,

rainfall), travel to the right as A is increased, while leaving

close-to-zero values, on the right hand side of the domain,

mostly unchanged. As reported in the caption, although
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measures corresponding to the

linear (top) and nonlinear

(bottom) map cases of Figs. 1

and 2. From left to right:

projection time series made of

4,096 values, autocorrelation

function computed up to 1,024

lags, power spectrum shown in

log–log scale, and multifractal

spectrum ‘‘f (vertical) versus a
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2048 1024
−1/e

0

1/e

1

0 1 2 3
−8

−6

−4

−2

0

0 1 2
0

1

2048 1024
−1/e

0

1/e

1

0 1 2 3
−8

−6

−4

−2

0

0 1 2
0

1

Fig. 4 Statistical and multifractal analyses of a normalized storm

data set gathered in Boston. From left to right: time series made of

2,048 values (with the last 58 points set to 0), autocorrelation function

computed up to 1,024 lags, power spectrum shown in log–log scale,

and multifractal spectrum ‘‘f (vertical) versus a (horizontal)’’
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these patterns share a similar fractal dimension Ddy close to

the average value of 1.30, they do not exhibit a monotonic

behavior in their other main statistical-multifractal quali-

fiers. For instance, there are up and down variations in: (a)

the fractal dimensions of their underlying attractors D, (b)

their correlation scales se, (c) the negative of the spectral

exponents b, and (d) their entropy dimensions D1 (even if

only slightly for the first four sets).

It is worth noticing that the last set, corresponding to the

lowest attractor dimension D, exhibits more areas of

inactivity as compared to the other sets. This happens

because such an attractor is less capable than the others of

filtering the intermittencies and overall complexity of the

parent multifractal measure dx. Due to this fact, the auto-

correlation function for such a case decays very fast to 0,

the spectral exponent yields a case close to ‘‘1/f’’ noise, and

the entropy dimension is low, indicating a high degree of

disorganization.

Figure 6 shows a similar sensitivity analysis to the one

just mentioned, but varying the frequency parameter x on

the cosine perturbation, while leaving the amplitude fixed

at A = 0.5. The sets shown correspond to equal increments

of x values ranging from 0.5 (top) to 2.5 (bottom), and,

hence, the second pattern from the top corresponds to the

one already presented in Fig. 2. Contrary to the previous

sensitivity analysis, the signals here maintain the locations

of their main chunks and major peaks when the frequency

parameter is varied. Also, some noticeable trends may be

discerned regarding their statistical-multifractal attributes,

as detailed in the caption of the figure: (a) the fractal

dimensions of the attractors D and signals Ddy decrease, (b)

their correlation scales se tend to decrease, and (c) the

entropy dimensions D1 also decrease.

Although results regarding the power spectral exponent

b are not equally conclusive for these cases, what was said

of the last pattern in Fig. 5 may also be said of the last two

sets in Fig. 6. As the fractal dimensions of their underlying

attractors D are significantly lower than the other signals,

such attractors reflect, to a larger degree than those with

higher dimensions, the intricacies of the highly irregular

parent multifractal measure dx. Overall, and for the par-

ticular set of parameters used, an increasingly oscillating

perturbation (i.e., as x increases) has the ultimate effect of

smoothing the attractor G, leading to more complex (i.e.,

lower se and D1) derived patterns. However, care must be

exercised, as shall be noted later, for an increase in fre-

quency does not necessarily imply a smoothing of an

attractor for other sets of parameters.

As a means of continuing the exploration, Fig. 7 pre-

sents other patterns obtained via a sensitivity analysis of

another more erratic set as computed via the linear fractal-

multifractal methodology (Puente 2004, Fig. 7). Specifi-

cally, all patterns correspond to the interpolating points

{(0, 0), (0.3, 1), (1, 0)}, vertical scalings d1 = 0.4, d2 =

-0.5, a parent multifractal parameter p = 0.4, a projection

angle h = -20�, when varying the cosine amplitude A

from 0 (i.e., the linear case) to 1 in increments of 0.25,

while having the frequency set at x = 0.05. Given that the

fractal dimensions of the attractors are lower than 1.2, all

patterns exhibit an intense level of activity reminiscent of

4096 1024
−1/e

0

1/e

1Fig. 5 Sensitivity of derived

measure dy to variations in

perturbation amplitudes A for a

fixed frequency x. Interpolating

points: {(0, 0), (1/2, -0.35), (1,

-0.2)}, vertical scalings:

d1 = -0.8, d2 = -0.6, parent

multifractal parameter: p = 0.3,

nonlinear perturbation:

g(y) = A � cos(x � y), A = 0

(top) to A = 0.5 (bottom) in

increments of 0.125, x = 1.

Key statistics (top to bottom):

D = 1.49, 1.56, 1.55, 1.47,

1.30, Ddy = 1.35, 1.28, 1.30,

1.28, 1.29, se = 101, 146, 250,

74, 10, b = -1.21, -1.55,

-1.45, -1.12, -0.98,

D1 = 0.88, 0.89, 0.90,

0.87, 0.74
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environmental signals that exhibit periodicities. As already

found in Fig. 5, when the amplitude increases significantly,

the resulting signal contains periods of no activity and has

an increasing complexity.

Notice how these deterministic ‘‘simulations,’’ that may

perhaps be interpreted as realizations of a stochastic

process, may indeed be used to describe, in their entirety,

the otherwise apparent randomness found in nature. This is

certainly a notable feature of these ideas that cannot be

easily matched by stochastic approaches, which by defi-

nition yield realizations that only match some of the

statistical-multifractal properties of the records. Observe

4096 1024
−1/e

0

1/e

1Fig. 6 Sensitivity of derived

measure dy to variations in

perturbation frequencies x for a

fixed amplitude A. Interpolating

points: {(0, 0), (1/2, -0.35), (1,

-0.2)}, vertical scalings:

d1 = -0.8, d2 = -0.6, parent

multifractal parameter: p = 0.3,

nonlinear perturbation:

g(y) = A � cos(x � y), A = 0.5,

x = 0.5 (top) to x = 2.5

(bottom) in increments of 0.5.

Key statistics (top to bottom):

D = 1.49, 1.47, 1.41, 1.30,

1.19, Ddy = 1.37, 1.31, 1.29,

1.29, 1.31, se = 137, 80, 19, 10,

10, b = -1.21, -1.08, -0.99,

-0.98, -1.00, D1 = 0.87, 0.85,

0.81, 0.74, 0.68
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1Fig. 7 Sensitivity of derived

measure dy to variations in

perturbation amplitudes A for a

fixed frequency x. Interpolating

points: {(0, 0), (0.3, 1), (1, 0)},

vertical scalings: d1 = 0.4,

d2 = -0.5, parent multifractal

parameter: p = 0.4, projection

angle: h = -20�, nonlinear

perturbation: g(y) = A �
cos(x � y), A = 0 (top) to

A = 1.0 (bottom) in increments

of 0.25, x = 0.05. Key statistics

(top to bottom): D = 1.20, 1.20,

1.20, 1.15, 1.12, Ddy = 1.42,

1.42, 1.40, 1.42, 1.38, se = 14,

27, 25, 25, 25, b = -1.14,

-1.08, -1.13, -1.07, -1.11,

D1 = 0.91, 0.90, 0.88, 0.88,

0.76
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that although the patterns in Fig. 7 show very similar sta-

tistical-multifractal characteristics, they are quite different

from one another. This fact implies that such attributes by

themselves can not characterize the variety of patterns

herein, and serves as a further reminder that they can not be

used for natural data sets either.

Figure 8 further explores the parameter space of the

nonlinear projections via a sensitivity analysis on the fre-

quency x, as in Fig. 6. Specifically, the patterns correspond

to the interpolating points {(0, 0), (1/2, 5), (1, 4)}, vertical

scalings d1 = 0.9, d2 = -0.4, a parent multifractal

parameter of p = 0.6, a projection angle h = 10�, when

varying the cosine frequency x from 0.5 to 2.5 in incre-

ments of 0.5, while having the amplitude fixed at A = 0.5.

As may be discerned, none of the patterns shown corre-

sponds to a linear fractal-multifractal case. While the top

pattern is reminiscent of other already found in this brief

exploration, the others show another host of plausible

natural sets having realistic statistical-multifractal qualifi-

ers. Notice that, unlike the results presented in Fig. 6, an

increase in the parameter x does not lead to a smoothing of

an attractor. In conclusion, the sensitivity of our procedure

on the parameter x is quite complex and not intuitive, as

the interplay between the iterations and the perturbation is

not trivial.

If the patterns shown were interpreted as hydrographs,

observe how the second one from the top would correspond

to perhaps a single event coming from a sustained rain.

Such a pattern is also reminiscent of the width-function of

natural river networks (i.e., the number of links as a

function of the distance to the basin’s outlet, Puente and

Sivakumar 2003).

Figure 9 further illustrates that other plausible width-

functions may be obtained from appropriate variations in

the amplitude parameters of the nonlinear perturbations of

a linear (bottom) fractal-multifractal projection (Puente

2004; Fig. 6). As may be seen, the statistics of these pat-

terns (except for the power spectral exponent) are quite

similar, yet the actual distributions exhibit distinct shapes

that may reflect alternative inner structures of natural river

networks. A relevant research question that these sets

inspire is to study how the parameters of the width function

may change in nature as a response to erosion mechanisms.

Based on our results, this may perhaps be addressed via

variations in the parameters of the (nonlinear) projections

herein.

As the choice of the bounded nonlinear perturbation is

clearly arbitrary, Fig. 10 shows an example of what can be

obtained by varying the functional shape of the nonlinear

perturbation. In this example, a sigmoid function

g(y) = A � (1 ? exp(-x � y))-1 is used. As done before, a

sensitivity analysis is presented based on the linear case

used in Figure 1, varying the amplitude A from 0 (i.e., the

linear case) to 0.5 in increments of 0.125, while keeping

the ‘‘frequency’’ at x = 2. Notice that, for the set of

parameters used, the choice of this perturbation leads to

fractal attractors of increasing dimensions, which leads to

increasing filtering of the parent multifractal, as reflected

4096 1024
−1/e

0

1/e

1Fig. 8 Sensitivity of derived

measure dy to variations in

perturbation frequencies x for a

fixed amplitude A. Interpolating

points: {(0, 0), (1/2, 5), (1, 4)},

vertical scalings: d1 = 0.9,

d2 = -0.4, parent multifractal

parameter: p = 0.6, projection

angle: h = 10�, nonlinear

perturbation: g(y) = A �
cos(x � y), A = 0.5, x = 0.5

(top) to x = 2.5 (bottom) in

increments of 0.5. Key statistics

(top to bottom): D = 1.19, 1.50,

1.53, 1.13, 1.54, Ddy = 1.37,

1.44, 1.41, 1.29, 1.30, se = 85,

417, 448, 262, 120, b = -1.11,

-1.00, -1.58, -1.27, -1.00,

D1 = 0.81, 0.94, 0.91, 0.86,

0.85
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by an increasing correlation scale. Clearly, this graph

represents just an example of the manifold possibilities of

extensions that can be envisaged when looking for geo-

metric representations of natural patterns.

In order to further appreciate the nature of the results

presented herein, Fig. 11 shows a case when a uniformly

random distribution, with varying amplitude, is used instead

of a nonlinear perturbation. This is included as one might

think that adding A � cos(x � y) to the linear maps may be

equivalent to adding just a random signal, especially for

high frequencies. As may be seen, however, increasing the

amplitude of an added noise tends unequivocally to a local
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1Fig. 9 Sensitivity of derived

measure dy to variations in

perturbation amplitudes A for a

fixed frequency x. Interpolating

points: {(0, 0), (1/2, 1), (1, 0)},

vertical scalings: d1 = 0.7,

d2 = -0.7, parent multifractal

parameter: p = 0.5, projection

angle: h = 20�, nonlinear

perturbation: g(y) = A �
cos(x � y), A = -0.5 (top) to

A = 0 (bottom) in increments of

0.125, x = 0.5. Key statistics

(top to bottom): D = 1.57, 1.56,

1.55, 1.55, 1.55, Ddy = 1.49,

1.49, 1.49, 1.49, 1.50, se = 222,

210, 216, 218, 224, b = -0.66,

-0.66, -0.72, -0.75, -0.80,

D1 = 0.99, 0.99, 0.99, 0.99,

0.99

4096 1024
−1/e

0

1/e

1Fig. 10 Sensitivity of derived

measure dy to variations in

perturbation amplitudes A for a

fixed frequency x. Interpolating

points: {(0, 0), (1/2, -0.35), (1,

-0.2)}, vertical scalings:

d1 = -0.8, d2 = -0.6, parent

multifractal parameter: p = 0.3,

projection angle: h = 0�,

nonlinear perturbation:

g(y) = A � (1 ? e-x�y)-1,

A = 0 (top) to A = 0.5 (bottom)

in increments of 0.125, x = 2.

Key statistics (top to bottom):

D = 1.50, 1.57, 1.62, 1.67,

1.72, Ddy = 1.35, 1.30, 1.27,

1.22, 1.26, se = 101, 218, 228,

353, 394, b = -1.21, -1.51,

-1.57, -1.66, -1.43,

D1 = 0.88, 0.91, 0.88, 0.89,

0.89
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smoothing of the derived measure (i.e., as in Fig. 1), and

such extensions are not that interesting.

Finally, it is relevant to mention that drastically

increasing the amplitude of an added perturbation (cosine

or sigmoid or even random) yields derived measures dy

that converge towards a Gaussian distribution, even when

the underlying attractors do not fill up space. This result

turns out to generalize the already nontrivial roads to

Gaussianity found via fractal interpolating functions and

the linear case (Puente et al. 1996). Details of these

extended results shall be reported elsewhere.

5 Summary

It has been illustrated that extensions of the fractal–

multifractal approach, obtained by adding nonlinear and

bounded perturbations to the linear equations to be iterated,

yield fractal attractors not shaped as continuous fractal

interpolating functions that, nonetheless, result in a multi-

tude of derived measures that resemble patterns found in

environmental applications. Such patterns are relevant in

practice as they: (a) vastly extend the already numerous

scenarios defined via the original linear framework, (b)

may be easily calculated at any resolution, and (c) result in

substantial compression ratios that, given the small number

of parameters, easily exceed ratios of 100:1.

In regards to the sensitivity cases shown herein, and

many others not reported, the following general trends may

be established: (a) the derived projection patterns dy

depend, in a rather nontrivial way, on the nature of the

nonlinear perturbation added, whose most general func-

tional form may be defined as g(y) = A � h(x � y), for a

suitable bounded function h, (b) ‘‘small’’ variations in

the amplitude A (at small constant x) yield more stable

sensitivity scenarios than ‘‘small’’ variations in the ‘‘fre-

quency’’ x for fixed amplitudes, (c) the patterns obtained

by adding the nonlinear perturbations are not equivalent to

those obtained by adding a white-noise, as may perhaps be

thought of, for an increase in the amplitude of the noise

progressively smooths out a given signal, and (d) there are

many combinations of the nonlinear parameters that yield

a Gaussian distribution as the derived pattern, dy, even

though the parameters of the linear maps do not imply a

space-filling attractor, as previously required on the linear

fractal–multifractal approach.

This work has shown that nonlinear extensions of the

fractal–multifractal approach represent a viable alternative

to existing stochastic methods for the modeling of envi-

ronmental information. This is so because the geometric

approach may (in principle) handle data sets in their

entirety, and not simply as plausible realizations that are

typically difficult to condition. These results therefore hint

at the possibility of hidden (nontrivial) determinism within

natural complexity via the projection ideas.

In a practical setting, the effective use of these ideas

depends (of course) on the resolution of a required inverse

problem for a given pattern. This problem, however, and as

hinted by the nature of the results herein, and those found

for the original linear case, is a rather challenging one. This
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1Fig. 11 Sensitivity of derived

measure dy to variations in

perturbation amplitudes A of a

uniform noise perturbation.

Interpolating points: {(0, 0),

(1/2, -0.35), (1, -0.2)},

vertical scalings: d1 = -0.8,

d2 = -0.6, parent multifractal

parameter: p = 0.3, projection

angle: h = 0�, noise

characteristics: A = 0 (top) to

A = 0.005 (bottom) in

increments of 0.00125. Key

statistics (top to bottom):

D = 1.50, 1.50, 1.51, 1.52,

1.53, Ddy = 1.35, 1.38, 1.40,

1.39, 1.40, se = 101, 174, 192,

219, 234, b = -1.21, -1.60,

-1.15, -0.97, -0.82,

D1 = 0.88, 0.90, 0.91, 0.92,

0.92
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is due to the fact that similar patterns may be obtained from

different parameter values (i.e., equifinality) and because

the lack of analytical expressions implies an optimization

problem that can only be solved numerically. We are

working on this problem via the use of neuro-fuzzy neural

networks and swarm intelligence computation, and results

shall be reported elsewhere.

Pending the resolution of such a problem, we envision

however that these notions (and other procedures aiming to

capture mathematical morphology explicitly) may result in

a more complete understanding of complex environmental

systems and the dynamics of the patterns they produce.

This is particularly so, as the evolution of records may

perhaps be discerned in the compressed parameter space of

subsequent sets, without the need of resorting to difficult-

to-solve (stochastic) differential equations whose structure

and initial conditions may not be easily determined (Puente

et al. 2001a, b). It is our hope that these geometry-based

ideas aimed at capturing what we observe, that is, the data,

would make further inroads in environmental research.
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